4,000 research outputs found

    Improving the theoretical prediction for the Bs−BˉsB_s-\bar{B}_s width difference: matrix elements of next-to-leading order ΔB=2\Delta B=2 operators

    Full text link
    We present lattice QCD results for the matrix elements of R2R_2 and other dimension-7, ΔB=2\Delta B = 2 operators relevant for calculations of ΔΓs\Delta \Gamma_s, the Bs−BˉsB_s-\bar{B}_s width difference. We have computed correlation functions using 5 ensembles of the MILC Collaboration's 2+1+1-flavour gauge field configurations, spanning 3 lattice spacings and light sea quarks masses down to the physical point. The HISQ action is used for the valence strange quarks, and the NRQCD action is used for the bottom quarks. Once our analysis is complete, the theoretical uncertainty in the Standard Model prediction for ΔΓs\Delta \Gamma_s will be substantially reduced.Comment: 8 pages. To appear in the Proceedings of the 35th International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spai

    Incremental HMM with an improved Baum-Welch Algorithm

    Get PDF
    There is an increasing demand for systems which handle higher density, additional loads as seen in storage workload modelling, where workloads can be characterized on-line. This paper aims to find a workload model which processes incoming data and then updates its parameters "on-the-fly." Essentially, this will be an incremental hidden Markov model (IncHMM) with an improved Baum-Welch algorithm. Thus, the benefit will be obtaining a parsimonious model which updates its encoded information whenever more real time workload data becomes available. To achieve this model, two new approximations of the Baum-Welch algorithm are defined, followed by training our model using discrete time series. This time series is transformed from a large network trace made up of I/O commands, into a partitioned binned trace, and then filtered through a K-means clustering algorithm to obtain an observation trace. The IncHMM, together with the observation trace, produces the required parameters to form a discrete Markov arrival process (MAP). Finally, we generate our own data trace (using the IncHMM parameters and a random distribution) and statistically compare it to the raw I/O trace, thus validating our model

    Journal publishing with Acrobat: the CAJUN project

    Get PDF
    The publication of material in electronic form should ideally preserve, in a unified document representation, all of the richness of the printed document while maintaining enough of its underlying structure to enable searching and other forms of semantic processing. Until recently it has been hard to find a document representation which combined these attributes and which also stood some chance of becoming a de facto multi-platform standard. This paper sets out experience gained within the Electronic Publishing Research Group at the University of Nottingham in using Adobe Acrobat software and its underlying PDF (Portable Document Format) notation. The CAJUN project1 (CD-ROM Acrobat Journals Using Networks) began in 1993 and has used Acrobat software to produce electronic versions of journal papers for network and CD-ROM dissemination. The paper describes the project's progress so far and also gives a brief assessment of PDF's suitability as a universal document interchange standard

    Cosmic Electromagnetic Fields due to Perturbations in the Gravitational Field

    Get PDF
    We use non-linear gauge-invariant perturbation theory to study the interaction of an inflation produced seed magnetic field with density and gravitational wave perturbations in an almost Friedmann-Lema\^itre-Robertson-Walker (FLRW) spacetime. We compare the effects of this coupling under the assumptions of poor conductivity, infinite conductivity and the case where the electric field is sourced via the coupling of velocity perturbations to the seed field in the ideal magnetohydrodynamic (MHD) regime, thus generalizing, improving on and correcting previous results. We solve our equations for long wavelength limits and numerically integrate the resulting equations to generate power spectra for the electromagnetic field variables, showing where the modes cross the horizon. We find that the rotation of the electric field dominates the power spectrum on small scales, in agreement with previous arguments.Comment: 16 pages, 3 figures, published in PR

    Patterns, causes, and consequences of marine larval dispersal

    Full text link
    Quantifying the probability of larval exchange among marine populations is key to predicting local population dynamics and optimizing networks of marine protected areas. The pattern of connectivity among populations can be described by the measurement of a dispersal kernel. However, a statistically robust, empirical dispersal kernel has been lacking for any marine species. Here, we use genetic parentage analysis to quantify a dispersal kernel for the reef fish Elacatinus lori, demonstrating that dispersal declines exponentially with distance. The spatial scale of dispersal is an order of magnitude less than previous estimates—the median dispersal distance is just 1.7 km and no dispersal events exceed 16.4 km despite intensive sampling out to 30 km from source. Overlaid on this strong pattern is subtle spatial variation, but neither pelagic larval duration nor direction is associated with the probability of successful dispersal. Given the strong relationship between distance and dispersal, we show that distance-driven logistic models have strong power to predict dispersal probabilities. Moreover, connectivity matrices generated from these models are congruent with empirical estimates of spatial genetic structure, suggesting that the pattern of dispersal we uncovered reflects long-term patterns of gene flow. These results challenge assumptions regarding the spatial scale and presumed predictors of marine population connectivity. We conclude that if marine reserve networks aim to connect whole communities of fishes and conserve biodiversity broadly, then reserves that are close in space (<10 km) will accommodate those members of the community that are short-distance dispersers.We thank Diana Acosta, Alben David, Kevin David, Alissa Rickborn, and Derek Scolaro for assistance with field work; Eliana Bondra for assistance with molecular work; and Peter Carlson for assistance with otolith work. We are grateful to Noel Anderson, David Lindo, Claire Paris, Robert Warner, Colleen Webb, and two anonymous reviewers for comments on this manuscript. This work was supported by National Science Foundation (NSF) Grant OCE-1260424, and C.C.D. was supported by NSF Graduate Research Fellowship DGE-1247312. All work was approved by Belize Fisheries and Boston University Institutional Animal Care and Use Committee. (OCE-1260424 - National Science Foundation (NSF); DGE-1247312 - NSF Graduate Research Fellowship)Published versio

    Ligand-based virtual screening using binary kernel discrimination

    Get PDF
    This paper discusses the use of a machine-learning technique called binary kernel discrimination (BKD) for virtual screening in drug- and pesticide-discovery programmes. BKD is compared with several other ligand-based tools for virtual screening in databases of 2D structures represented by fragment bit-strings, and is shown to provide an effective, and reasonably efficient, way of prioritising compounds for biological screening

    The fast transient sky with Gaia

    Get PDF
    The ESA Gaia satellite scans the whole sky with a temporal sampling ranging from seconds and hours to months. Each time a source passes within the Gaia field of view, it moves over 10 CCDs in 45 s and a lightcurve with 4.5 s sampling (the crossing time per CCD) is registered. Given that the 4.5 s sampling represents a virtually unexplored parameter space in optical time domain astronomy, this data set potentially provides a unique opportunity to open up the fast transient sky. We present a method to start mining the wealth of information in the per CCD Gaia data. We perform extensive data filtering to eliminate known on-board and data processing artefacts, and present a statistical method to identify sources that show transient brightness variations on ~2 hours timescales. We illustrate that by using the Gaia photometric CCD measurements, we can detect transient brightness variations down to an amplitude of 0.3 mag on timescales ranging from 15 seconds to several hours. We search an area of ~23.5 square degrees on the sky, and find four strong candidate fast transients. Two candidates are tentatively classified as flares on M-dwarf stars, while one is probably a flare on a giant star and one potentially a flare on a solar type star. These classifications are based on archival data and the timescales involved. We argue that the method presented here can be added to the existing Gaia Science Alerts infrastructure for the near real-time public dissemination of fast transient events.Comment: 10 pages, 5 figures and 5 tables; MNRAS in pres

    The Rich Mid-Infrared Environments of Two Highly-Obscured X-ray Binaries: Spitzer Observations of IGR J16318-4848 and GX 301-2

    Get PDF
    We present the results of Spitzer mid-infrared spectroscopic observations of two highly-obscured massive X-ray binaries: IGR J16318-4848 and GX301-2. Our observations reveal for the first time the extremely rich mid-infrared environments of this type of source, including multiple continuum emission components (a hot component with T > 700 K and a warm component with T ~ 180 K) with apparent silicate absorption features, numerous HI recombination lines, many forbidden ionic lines of low ionization potentials, and pure rotational H2 lines. This indicates that both sources have hot and warm circumstellar dust, ionized stellar winds, extended low-density ionized regions, and photo-dissociated regions. It appears difficult to attribute the total optical extinction of both sources to the hot and warm dust components, which suggests that there could be an otherwise observable colder dust component responsible for the most of the optical extinction and silicate absorption features. The observed mid-infrared spectra are similar to those from Luminous Blue Variables, indicating that the highly-obscured massive X-ray binaries may represent a previously unknown evolutionary phase of X-ray binaries with early-type optical companions. Our results highlight the importance and utility of mid-infrared spectroscopy to investigate highly-obscured X-ray binaries.Comment: To appear in ApJ Letter

    Analysis of deep levels in a phenylenevinylene polymer by transient capacitance methods

    Get PDF
    Transient capacitance methods were applied to the depletion region of an abrupt asymmetric n(+) -p junction of silicon and unintentionally doped poly[2-methoxy, 5 ethyl (2' hexyloxy) paraphenylenevinylene] (MEH-PPV). Studies in the temperature range 100-300 K show the presence of a majority-carrier trap at 1.0 eV and two minority traps at 0.7 and 1.3 eV, respectively. There is an indication for more levels for which the activation energy could not be determined. Furthermore, admittance data reveal a bulk activation energy for conduction of 0.12 eV, suggesting the presence of an additional shallow acceptor state. (C) 1999 American Institute of Physics. [S0003-6951(99)02308-6]
    • …
    corecore